Changes in the Interaction between Tropical Convection, Radiation, and the Large-Scale Circulation in a Warming Environment
نویسندگان
چکیده
This paper explores the response of the tropical hydrologic cycle to surface warming through the lens of large-domain cloud-system-resolving model experiments run in a radiative–convective equilibrium framework. Simulations are run for 55 days and are driven with fixed insolation and constant sea surface temparatures (SSTs) of 298 K, 300 K, and 302 K. In each experiment, convection organizes into coherent regions of large-scale ascent separated by areas with relatively clear air and troposphere-deep descent. Aspects of the simulations correspond to observed features of the tropical climate system, including the transition to large precipitation rates above a critical value of total column water vapor, and an increase in convective intensity with SST amidst weakening of the large-scale overturning circulation. However, the authors also find notable changes to the interaction between convection and the environment as the surface warms. In particular, organized convection in simulations with SSTs of 298 and 300 K is inhibited by the presence of a strong midtropospheric stable layer and dry upper troposphere. As a result, there is a decrease in the vigor of deep convection and an increase in stratiform precipitation fraction with an increase in SST from 298 to 300 K. With an increase in SST to 302 K, moistening of the middletroposphere and increase in lower-tropospheric buoyancy serve to overcome these limitations, leading to an overall increase in convective intensity and larger increase in upper-tropospheric relative humidity. The authors conclude that, while convective intensity increases with SST, the aggregate nature of deep convection is strongly affected by the details of the thermodynamic environment in which it develops. In particular, the positive feedback between increasing SST and a moistening upper troposphere found in the simulations, operates as a nonmonotonic function of SST and is modulated by a complex interaction between deep convection and the environmental relative humidity and static stability profile. The results suggest that projected changes in convection that assume a monotonic dependence on SST may constitute an oversimplification.
منابع مشابه
Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation
Tropical deep convection exhibits complex organization over a wide range of scales. This study investigates the relationships between the spatial organization of deep convection and the large-scale atmospheric state. By using several satellite datasets and reanalyses, and by defining a simple diagnostic of convective aggregation, relationships between the degree of convective aggregation and th...
متن کاملStudy of the models of large-scale atmospheric circulation system model on intesify rainfall in Ardebil plain
Atmospheric circulation is important to determine the surface climate and environment, and affect regional climate and surface features. In this study, to quantify its effect, the classification system, developed by Lamb is applied to obtain circulation information for Ardabil, North West Province in Iran, on a daily basis, and is a method to classify synoptic weather for study area. For that p...
متن کاملThe response of moist convection and the atmospheric general circulation to climate Activ
In this thesis, the response of atmospheric circulations to changes in surface temperature is investigated. Both cloud-scale and planetary-scale circulations are considered, and a number of different theoretical and numerical tools are employed. First, mechanisms maintaining the thermal stratification of a convecting atmosphere are examined based on simulations of radiative-convective equilibri...
متن کاملImpacts of climate change and variability on tropospheric ozone and its precursors.
Two coupled climate-chemistry model experiments for the period 1990-2030 were conducted: one with a fixed climate and the other with a varying climate forced by the is92a scenario. By comparing results from these experiments we have attempted to identify changes and variations in physical climate that may have important influences upon tropospheric chemical composition. Climate variables consid...
متن کاملA Numerical Study of Natural Convection and Radiation Interaction in Vertical Circular Pin
A numerical finite difference study has been earned out for two dimensional radiation-natural convection interaction phenomena in a vertical circular pin located at a non-participating (i.e. transparent) fluid. The coupled conservation equations in boundary layer (continuity, momentum, and energy equations) and pin energy equation are solved simultaneously using modified box method and fully im...
متن کامل